

Available online at www.sciencedirect.com

Journal of Power Sources 166 (2007) 219-225

www.elsevier.com/locate/jpowsour

An alternative method to improve the electrochemical performance of a lithium secondary battery with LiMn₂O₄

Sung Bin Park^a, Sang Myung Lee^a, Ho Chul Shin^a, Won Il Cho^b, Ho Jang^{a,*}

 ^a Department of Materials Science & Engineering, College of Engineering, Korea University 5-1, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
^b Eco-Nano Research Center, Korea Institute of Science and Technology 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea

> Received 7 October 2006; accepted 17 December 2006 Available online 18 January 2007

Abstract

The electrochemical properties of the Li-ion battery with a lithium manganese oxide (LiMn₂O₄) cathode are improved by efficiently reducing the reaction between LiMn₂O₄ and hydrofluoric acid (HF) produced in the electrolyte. By introducing fine ZrO_2 particles in the slurry during fabrication, Mn dissolution of the cathode during the charge–discharge cycles is minimized by scavenging the HF produced in the cell. Results from galvanostatic experiments show that the capacity retention of the LiMn₂O₄ fabricated with new method is maintained up to 92% after 50 cycles at room temperature and 76% at high temperature without losing initial capacity. The improvement in the electrochemical properties of the cathode prepared by this method is superior to other approaches in terms of fabrication process and it sheds light on the possibility of further improving the electrochemical properties of LiMn₂O₄.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Lithium manganese oxide; Lithium-ion battery; Capacity retention; Hydrofluoric acid; Zirconium oxide particles

1. Introduction

Lithium manganese oxide (LiMn₂O₄) has been considered as a promising positive-electrode (cathode) material for lithiumion batteries since it is non-toxic and cost-effective. Another advantage of using the LiMn₂O₄ is based on its high cell voltage so that it has been considered as a cathode material for high-power battery applications. The material suffers, however, from insufficient cycling stability and structural instability for high-temperature applications. The instability of LiMn₂O₄ is attributed to Mn dissolution into electrolyte due to hydrofluoric acid (HF) produced by the reaction of LiPF₆ and H₂O in the electrolyte [1]. The Mn dissolution has been expressed in terms of Hunter's reaction [2];

 $2\text{LiMn}_2\text{O}_4 \rightarrow 3\lambda\text{-MnO}_2 + \text{MnO} + \text{Li}_2\text{O} \tag{1}$

and the dissolution of MnO_2 and Li_2O into the electrolyte is known to give strong adverse effects on the performance of the $LiMn_2O_4$ at elevated temperature (40–50 °C) [3–6].

To overcome the shortcomings of LiMn₂O₄, several approaches have been carried out [7–10]. One way to solve the problem is the substitution of mono-, di-, or trivalent cations in LiMn₂O₄ to decrease Mn³⁺ ions which cause disproportion reactions. An alternative approach is to coat the LiMn₂O₄ particles with various protective layers of ZrO₂, ZnO, Al₂O₃, and SiO₂ [3,4]. This is because these oxides can suppress Mn dissolution by scavenging HF from the electrolyte. Thackeray et al. [9] introduced colloidal nano-particles of ZrO₂ on the surface of the spinel electrode and reported an improvement in cycle stability at 50 °C. Sun et al. [11] also used ZnO to coat LiNi_{0.5}Mn_{1.5}O₄ particles by means of a sol–gel method and successfully scavenged the HF produced in the cell.

Protecting the $LiMn_2O_4$ particles from HF in the electrolyte appears successful in improving the structural stability of the cathode and maintaining the capacity of Li-ion batteries. The detailed mechanism of the successful treatments for better

^{*} Corresponding author. Tel.: +82 2 3290 3276; fax: +82 2 928 3584. *E-mail address:* hojang@korea.ac.kr (H. Jang).

^{0378-7753/\$ –} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2006.12.094

performance, however, has not been reported and has yet to be elucidated. In particular, the effect of the ZrO_2 location in the cell has not been examined systematically despite the fact that it is crucial to understand the role of the oxides in providing better electrochemical performance.

This study focuses on the effectiveness of ZrO_2 in protecting Mn dissolution by changing the location on the oxide at which the reaction takes place. In particular, the mechanism account for the improvement in the electrochemical properties by oxide addition is explored by comparing four different cells produced using bare LiMn₂O₄, ZrO₂ attached LiMn₂O₄, a slurry mixed with ZrO₂, and by directly introducing ZrO₂ into the electrolyte.

2. Experimental

Bare LiMn₂O₄ was synthesized by a sol–gel method. The 0.1 M (CH₃COO)Li·H₂O and 0.2 M Mn(CH₃COO)₂·4H₂O were dissolved in distilled water and acrylic acid was added to the solution to control the reaction kinetics. The remaining water and acrylic acid were removed in a rotary evaporator at 80 °C. After drying, the product was heated for 12 h at 600 °C in air followed by calcination at 800 °C for 24 h under an oxygen flow. To produce ZrO₂ attached LiMn₂O₄ particles, 2 wt.% ZrO₂ (zirconium(IV) oxide, nano-powder, Aldrich) was mixed with the LiMn₂O₄ that was calcined for 18 h at 800 °C under an oxygen flow. The cathode was also prepared by adding 2 wt.% of ZrO₂ directly into the slurry and by adding 2 wt.% of ZrO₂ to the electrolyte.

The positive electrode was prepared by combining $LiMn_2O_4$, polyvinylidene difluoride (PVdF) (5 wt.% in 1-methyl-2pyrrolinone (NMP)), and carbon. The ratio was 85:5:10 in wt.% and acetone was added to lower the viscosity before homogenizing the mixture at 5000 rpm. The cathode was cast by the doctor blade method on an Al foil. It was pressed using a rolling press at 110 °C and dried in a vacuum oven for 24 h at 80 °C. The

Fig. 1. X-Ray diffraction patterns obtained from (a) $LiMn_2O_4$ and (b) $LiMn_2O_4$ with 2 wt.% ZrO₂. Diffraction angles (2 θ) from ZrO₂ phases are indicated by asterisks.

electrolyte was 1 M high purity LiPF_6 dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 volume ratio). Cells were assembled in a dry room and poly-propylene (PP) was used for the separator.

The electrochemical properties of $LiMn_2O_4$ were examined using coin cells with a lithium foil as a negative electrode. Charge–discharge experiments were carried out at room tem-

Fig. 2. Scanning electron micrographs of: (a) bare $LiMn_2O_4$, (b) $LiMn_2O_4$ with 2wt.% ZrO₂, and (c) ZrO₂ added slurry.

perature and 55 °C by means of a battery cycling system (Maccor4000, Maccor). The charge–discharge rate was set at 0.5 C and tests were conducted for 50 cycles at room temperature and 30 cycles at 55 °C. The crystal structure of the specimen was examined by X-ray diffraction (XRD; D/MAX-II A) and the morphology of the powder specimen was investigated with a scanning electron microscope (SEM; Hitachi, S-4300) and a transmission electron microscope (TEM; JEOL, JEM4010).

3. Results and discussion

3.1. Crystal structure and surface morphology

The XRD patterns obtained from bare LiMn₂O₄ and after ZrO₂ attachment are given in Fig. 1. These indicate a wellcrystallized spinel structure (space group Fd3m) [12] without producing impurity phases since the patterns do not exhibit extra peaks. The LiMn₂O₄ attached with ZrO₂ particles shows small peaks in the XRD pattern that correspond to ZrO₂. The lattice parameters of bare and ZrO₂-modified material are 8.24 and 8.25 Å, respectively.

Scanning electron micrographs of the specimens are presented in Fig. 2. It is seen that the particle size of bare $LiMn_2O_4$ is in the range of 0.1–0.5 µm and that there is no size difference between the ZrO_2 -modified $LiMn_2O_4$ and the bare particles after heat treatment (Fig. 2(a, b)). The ZrO_2 particles are slightly larger than their initial size due to high-temperature heat treatment and are physically in contact with the $LiMn_2O_4$ particles. The micrographs also show that the ZrO_2 particles are aggregated on the $LiMn_2O_4$ surface, and this reduces the specific surface-area for chemical reaction. The slurry with ZrO_2 particles is shown in Fig. 2(c). All the ingredients used to prepare slurry are visible and the $LiMn_2O_4$ surfaces are clean without any adherent ZrO_2 particles. Transmission electron micrographs in Fig. 3 show bare $LiMn_2O_4$ particles and ZrO_2 particles adhered to $LiMn_2O_4$. This suggests that the effective surface area of ZrO_2 -attached $LiMn_2O_4$ available for intercalation of Li is decreased. The attached ZrO_2 particles also appear to reduce the effective surface area that participates in the chemical reaction to scavenge HF in the cell.

3.2. Electrochemical properties

The charge-discharge characteristics of the four specimens investigated in this study are presented in Fig. 4. All specimens show two distinct discharge plateaux. These are attributed to orderly intercalating lithium ions in the tetrahedral (8a) sites at 4.1 V and disorderly intercalating lithium ions at 3.9 V [13]. The charge-discharge curve obtained at room temperature from bare $LiMn_2O_4$ (Fig. 4(a)) shows a relatively large fading in capacity after 50 cycles. On the other hand, the capacity fading is worse in the case of using LiMn₂O₄ attached with ZrO₂ particles (Fig. 4(b)). This suggests that the mixing and subsequent heat treatment of fine ZrO₂ particles with LiMn₂O₄ is not effective in terms of an improvement in the electrochemical properties of LiMn₂O₄. This apparent harmful effect of ZrO₂ attachment appears to be due to the adherent ZrO₂ particles blocking the pathway for Li intercalation on the surface of the active material. The application of the ZrO₂ to scavenge HF also seems to be inefficient in this case because of the reduced effective surface area of the ZrO₂ particles for the chemical reaction with HF. This is contrary to the successful results from other workers [9,11,14] and the difference appears to rely on the resultant morphology of the coating layers on the LiMn₂O₄ surface.

On the other hand, the charge–discharge curves from the cathode made from the slurry mixed with the same ZrO_2 particles

Fig. 3. Transmission electron micrographs of: (a) bare $LiMn_2O_4$ and (b) $LiMn_2O_4$ with 2 wt.% ZrO_2 .

Fig. 4. Charge–discharge curves from cathodes at room temperature using: (a) bare LiMn₂O₄, (b) LiMn₂O₄ with 2 wt.% ZrO₂, (c) ZrO₂ added slurry, and (d) ZrO₂ in the electrolyte.

showed the best performance compared with other methods. It showed 92% capacity retention after 50 cycles (Fig. 4(c)). The beneficial effect of adding ZrO_2 to the slurry appears due to the greater surface area that takes part in the chemical reaction than when ZrO_2 is attached to $LiMn_2O_4$. This is a salient result and can provide a viable alternative to improve the electrochemical performance of the cathode for Li-ion batteries. This is because the mixing of ZrO_2 into the slurry greatly simplifies the fabrication procedure compared with other coating methods. An attempt was also made to improve the performance of the cathode by inserting the same ZrO_2 into the electrolyte, which is the source of the HF in the cell [1]. The effect of the ZrO_2 in the electrolyte, however, is inferior to that of ZrO_2 in the slurry (Fig. 4(d)) but is similar to that of the cell with bare $LiMn_2O_4$.

High-temperature, charge–discharge experiments were performed because Mn dissolution is severe at high temperatures [15,16]. The test was carried out for up to 30 cycles due to fast reaction of LiMn₂O₄ with HF (Fig. 5). The results show that the cathode with ZrO₂ particles in the slurry protect the LiMn₂O₄ from HF attack, which suggests that the contact and effective surface area of ZrO₂ are again crucial factors at high temperatures. The curves in Fig. 5 indicate that the suppression of Mn dissolution is more pronounced by using a slurry with ZrO₂ particles than the three other cases at high temperature. Improvement of the electrochemical properties of LiMn₂O₄ at

 $Fig. 5. Charge-discharge curves from cathodes at 55 ^{\circ}C using: (a) bare LiMn_2O_4, (b) LiMn_2O_4 with 2 wt.\% ZrO_2, (c) ZrO_2 added slurry, and (d) ZrO_2 in electrolyte.$

elevated temperatures has been reported by coating amphoteric oxides such as ZrO_2 and ZnO on $LiMn_2O_4$ particles [9,14]. Thackeray et al. [9] reported that ZrO_2 or $LiZrO_3$ coated on the surface of spinel or layered cathodes enhances the electrochemical performance by minimizing the solubility of $LiMn_2O_4$ or by suppressing the reactivity of the layered electrodes. Sun et al. [14] also suggested that an amphoteric oxide such as ZnO scavenges HF in the electrolyte. The enhanced electrochemical properties of the $LiMn_2O_4$ from these previous studies, however, were accomplished by coating the $LiMn_2O_4$ surface by amphoteric oxides and protecting the surface from HF. On the other hand, the improvement observed in this present investigation is based on the addition of amphoteric powder to the slurry, which is much simpler from a manufacturer's point of view.

The cycling stability of the four different cells was examined by measuring the cell capacity at the 0.5 C rate. Cycling curves at room temperature and at high temperature are shown in Figs. 6 and 7. The bare LiMn₂O₄ shows 85% capacity retention while the specimen with ZrO₂ in the slurry reports 92% capacity retention after 50 cycles at room temperature without losing initial capacity. In general, coated cathodes have shown lower initial capacities than a bare cathode. Wu and co-workers [17] found that the initial capacity of the electrode containing bare LiMn₂O₄ was about 125 mA h g⁻¹ while the capacity after 5% ZrO₂ coating was reduced to 118 mA h g⁻¹. Zheng et al. [18] obtained a similar result from a sol–gel coated cathode material. In this study, however, the cathode with ZrO₂ in the slurry displays almost the same initial capacity compared with the bare electrode.

Fig. 6. Cycling stability curves at room temperature at 0.5 C rate using bare LiMn₂O₄, LiMn₂O₄ with $2 \text{ wt.}\% \text{ ZrO}_2$, ZrO₂ added slurry, and ZrO₂ in electrolyte.

The cycling stability at 55 °C is presented in Fig. 7. The data show that the cathode with ZrO_2 in the slurry exhibits good capacity retention in comparison with other cases. This is consistent with the results from Thackeray and co-workers [15]. These authors reported that a specimen with the high specific surface area of ZrO_2 exhibited better capacity retention than a specimen coated with larger ZrO_2 . They also found that the initial capacity was decreased while the capacity retention was improved after ZrO_2 coating. On the other hand, the cycling stability curves in Fig. 7 show 76% capacity retention without loss in initial capacity when ZrO_2 is added to the slurry.

A quantitative analysis of the role of ZrO_2 in the cell is not provided in this paper. It appears that the ZrO_2 particles evenly

Fig. 7. Cycling stability curves at $55\,^{\circ}$ C at $0.5\,$ C rate using bare LiMn₂O₄, LiMn₂O₄ with 2 wt.% ZrO₂, ZrO₂ added slurry, and ZrO₂ in electrolyte.

distributed in the slurry are more effective in scavenging the HF than those in the electrolyte or on the $LiMn_2O_4$ surface. Although this new method of manufacturing a cathode by mixing ZrO_2 into the slurry is slightly inferior to other reported coating methods in terms of capacity retention during cycling, the maintenance of the initial capacity and the simple production route that sidesteps the elaborate procedure of oxide coating suggest that there is scope to improve the electrochemical properties of $LiMn_2O_4$.

4. Conclusions

The effects of ZrO_2 on the electrochemical properties of $LiMn_2O_4$ have been studied using electrochemical tests and several analytical methods such as XRD, SEM, and TEM. The results can be summarized as follows:

- (i) The synthesized $LiMn_2O_4$ does not show secondary phases, which indicates that ZrO_2 does not react with $LiMn_2O_4$.
- (ii) A cathode with ZrO_2 in the slurry does not affect the initial capacity compared with bare $LiMn_2O_4$ and maintains a capacity retention of up to 92% at room temperature and 76% at high temperature.
- (iii) ZrO_2 in the slurry is more effective than ZrO_2 in the electrolyte since protection of the cathode from HF is enhanced by dispersed ZrO_2 particles in the vicinity of the cathode materials but not in contact, with them.
- (iv) To reduce production time and cost, addition of ZrO_2 to the slurry is recommended to improve the electrochemical properties of LiMn₂O₄ cathodes.

Acknowledgement

This work was financially supported by a grant from the Ministry of Commerce, Industry and Energy of Korea (research grant code: #M10428010002-04L2801-00210).

References

- R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, J. Electroanal. Chem. 566 (2004) 187–192.
- [2] J.M. Tarascon, W.R. McKinnon, F. Coowar, T.N. Bowner, G. Amatucci, D. Guromard, J. Electrochem. Soc. 141 (1994) 1421.
- [3] J.C. Hunter, J. Solid State Chem. 39 (1981) 142.
- [4] A. Blyr, C. Sigala, G.G. Amatucci, D. Guyomard, Y. Chabres, J.M. Tarascon, J. Electrochem. Soc. 145 (1998) 194.
- [5] A.D. Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B. Gerand, J.M. Tarascon, J. Electrochem. Soc. 146 (1999) 428–436.
- [6] Y. Matsuo, R. Kostecki, F. McLarnon, J. Electrochem. Soc. 148 (2001) A687–A692.
- [7] S.T. Myoung, S. Komaba, N. Kumagai, H. Yashiro, H.T. Chung, T.H. Cho, Electrochim. Acta 47 (2002) 2543.
- [8] D. Song, T. Uchida, M. Wakihara, Solid State Ionics 117 (1999) 151.
- [9] M.M. Thackeray, C.S. Johnson, J.-S. Kim, K.C. Lauzze, J.T. Vaughey, Electrochem. Commun. 5 (2003) 752–758.
- [10] A. Eftekhari, Solid State Ionics 167 (2004) 237–242.
- [11] Y.K. Sun, C.S. Yoon, I.H. Oh, Electrochim. Acta 48 (2003) 503– 506.
- [12] X. Wu, S.B. Kim, J. Power Sources 109 (2002) 53.

- [13] X. He, J. Li, Y. Cai, Y. Wang, J. Ying, C. Jiang, C. Wan, J. Power Sources 150 (2005) 216–222.
- [14] Y.K. Sun, K.J. Hong, J. Prakash, J. Electrochem. Soc. 150 (2003) A970– A972.
- [15] J.S. Kim, C.S. Johnson, J.T. Vaughey, S.A. Hackney, K.A. Walz, M.M. Thackeray, J. Electrochem. Soc. 151 (2004) A1755–A1761.
- [16] D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, J. Power Sources 103 (2001) 10–17.
- [17] Y.M. Lin, H.C. Wu, Y.C. Yen, Z.Z. Guo, N.L. Wu, J. Electrochem. Soc. 152 (2005) A1526–A1532.
- [18] Z. Zheng, Z. Tang, Z. Zhang, W. Shen, Y. Lin, Solid State Ionics 148 (2002) 317–321.